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RESEARCH MJ3MORANwM 

OFF-DEIGN PERFORMANCE OF DrVERGENT EJECPORS* 

By Milton A. Beheim 

SUMMARY 

The off-design performance of fixed- and of variable-gemetry di- 
vergent e jectors  was investigated. The ejectors, which were designed 
f o r  turbojet  operation a t  Mach 3, were investigated i n  the Mach number 
range 0.8 t o  2. The performance of a fixed-geometry ejector  with high 
secondary-flow ra t e s  was competitive w i t h  t ha t  of more complex variable- 
geometry ejectors.  Variable-geometry ejectors with compromises t o  re- 
duce mechanical complexity produced performance reasonably close t o  that 
of an idea l  variable ejector.  

INTRODUCTION 

Simple fixed-geometry divergent ejectors designed f o r  good perform- 
ance a t  high f l ight  speeds (e.g., Mach 3) suf fer  large performance losses 
a t  low speeds. 
on the geometry and the j e t  and stream interaction. 
that the performance of such an ejector  c m  be so poor a t  low speeds 
that an airplane would not be able t o  accelerate t o  the high design 
speed. In other cases where suf f ic ien t  thrust  w a s  available during 
acceleration, excessive fue l  consumption occurred. 

This loss  resu l t s  f r o m  j e t  overexpansion, which depends 
Analyses have shown 

The following techniques of solving the problem a re  considered i n  
t h i s  investigation: 
off-design performance; (2) employ variable geometry; (3)  employ large 
amounts of secondary airflow t o  f i l l  i n  the excess area of the  exit. 
These schemes were investigated i n  the NACA L e w i s  8- by 6-foot tunnel 
i n  the Mach number range 0.8 t o  2. 

(1) Compromise the design performance t o  improve 
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D b o a t t a i l  plus base drag 

b o a t t a i l  drag coefficient based on maximum cross-sectional area 
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maximum forebody diameter 

primary-nozzle diameter 

spoiler diameter 

secondary-nozzle diameter 

ejector gross thrust 

gross thrust of ideal completely expanded primary flow 

axial distance from primary-nozzle exit to ejector exit 

Mach number 

bypass mass-flow rate 

secondary mass-flow rate 

maximum capture mass-flow rate of inlet 

primary total pressure 

secondary total pressure 

free-stream total pressure (upstream of model) 

local Pitot pressure 

base static pressure 

boattail static pressure 

exit-plane static pressure 

free-stream static pressure (upstream of model) 

primary total taperatwe 

secondary total temperature 

free-stream velocity 
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U divergence angle, deg 

P b o a t t a i l  angle, deg 

Subscripts : 

ab afterburning 

a l oca l  

nb no af terburning 

normal distance from body surface 
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Ejector Models 

Thirteen different  e jectors  were used i n  this investigation, each 
ident i f ied by number. 
i, and each sketch i s  accompanied with a table of the geometrical param- 
eters.  
1 2  were mounted on the cyl indrical  section of the model, which had an 
8-inch outside diameter. With ejector  13 the outside diameter of the 
cylinder was reduced from 8 t o  6.4 inches by an abrupt step 22 inches 
upstream of the e x i t  plane. 

Sketches of the ejectors are presented i n  figure 

Ejectors 1 t o  These parameters are  a l s o  summarized i n  tab le  I. 

Ejectors 1 t o  9 and 13 had low boat ta i l  angles representative of 
nacelle-type instal la t ions.  
as with cer ta in  fuselage-type installations.  

Ejectors 10 t o  1 2  had high boa t t a i l  angles 

Ejectors 1 t o  9 were investigated with e i ther  of two primary- 
nozzle-exit diameters corresponding t o  operation with f u l l  afterburning 
and with no afterburning. "he r a t i o  of nonafterbuming t o  afterburning 
primary-nozzle diameter was 0.75. 

Ejectors 1 t o  6 ( f igs .  l (a )  t o  (d)) were fixed-geometry types with 
various values of the geometrical parameters t h a t  a f f ec t  e jector  per- 
formance (such as expansion rat io ,  secondary diameter ra t io ,  divergence 
angle, etc.). Ejector 3 
had a divergent wall contoured (by the method of re f .  1) t o  produce 
nearly axial flow a t  the ex i t  plane. 

A l l  e jectors  except ejector 3 were conical. 
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separatio"; Ai?? (7 air'ih';fectfbn %fkbugh Mfrfulbf. sloes ih the divergent 
w a l l  t o  encourage j e t  separation and t o  fill i n  excess flow area a t  the 
ex i t  plane. 
simultaneously. 

These techniques were investigated independently and a l so  

One type of variable-geometry ejector  (7)  that was investigated i s  
i l l u s t r a t ed  i n  figure l(f). The divergent portion was assumed t o  be com- 
posed of several leaves that could be rotated i n  such a manner as t o  vary 
the e x i t  area while maintaining a f ixed secondary diameter. 
Mach number (and simultaneously nozzle pressure r a t io )  decreased, the  exit 
area would be decreased t o  provide the correct e x p s i o n  ra t io .  The two- 
step boa t t a i l  geometry that i s  shown would r e su l t  i n  bigher b o a t t a i l  drag 
a t  Mach 3 than would occur i f  a single boa t t a i l  angle had been selected, 
but it would incur l e s s  drag with low-speed positions. 
ejector of t h i s  type w a s  not constructed; but ra ther  various posit ions of 
the movable portion corresponding t o  operation a t  various Mach numbers 
were selected, and models were constructed t o  simulate these conditions. 

A s  f l ight  

An ac tua l  variable 

Another variable-geometry ejector  (8) that was investigated i s  shown 
i n  figure l ( g ) .  
be constructed of leaves that could be rotated t o  vary e x i t  area while 
maintaining a constant secondary diameter. However, i n  this case the 
boa t ta i l  was kept fixed. A s  a resu l t ,  as e x i t  area decreased, base area 
increased. The model was designed with a removable base p la te  t o  invest i -  
gate the e f fec t  of base bleed flow. Again, fixed-geometry models were 
constructed t o  simulate various positions of i n t e re s t  of the movable por- 
t ion of the ejector. 

A s  with e jec tor  7, the divergent portion was assumed t o  

A t h i r d  ty-pe of variable-geometry ejector  (9)  that was investigated 
i s  shown i n  figure l ( h ) .  
both fixed and tne secondary diameter was variable. 
was assumed t o  be constructed of leaves that were hinged a t  the e x i t  plane. 
A t  the design Mach number the secondary diameter would be a t  i t s  minimum 
value and would be large enough t o  permit the passage of the cooling 
secondary airflow. 
eter would be increased t o  permit the flow of suf f ic ien t ly  large quantit ies 
of secondary a i r  t o  f i l l  i n  the excess flow area a t  the e x i t  plane and 
prevent overexpansion of the primary flow. As with the other variable 
ejectors, fixed-geometry models simulated posit ions of i n t e r e s t  of the 
hypothetical variable ejector.  

In t h i s  case the boa t t a i l  and ex i t  area were 
The divergent w a l l  

A t  lower than design Mach numbers the secondary diam- 

A s  indicated ear l ie r ,  e jectors  10 t o  12  ( f igs .  l(i) and ( j ) )  had 
higher boa t t a i l  angles than those discussed thus far. They simulated a 
f a m i l y  of fixed-geometry ejectors  with various values of the geometrical 
parameters. 
afterburning) was investigated with these models. 

only one primary-nozzle position tcorresponding t o  f u l l  
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Tunnel Instal la t ion 

A schematic sketch of the ins ta l la t ion  of the model i n  the tunnel i s  
shown i n  f igure 2. The downstream portion of the walls of the 8- by 
6-foot t e s t  section have been perforated t o  permit operation a t  any Mach 
number from 0.6 t o  2.1. 
a t t a i n  a more continuous blockage area dis t r ibut ion f o r  more uniform flow 
a t  transonic speeds. Primary and secondary air were ducted separately t o  
the model through the support s t ru t s .  

The support s t ru t s  were swept forward 4 5 O  t o  

P i t o t  pressure prof i les  normal t o  the body j u s t  upstream of the boat- 
t a i l  a re  shown i n  f igure 3 f o r  several tunnel Mach numbers. 
were placed i n  the plane of the s t r u t  and also normal t o  it. 
location is  indicated in f igure 2. 
profiles,  it appears that boundary-layer thickness was about 0.8 inch a t  
Mach numbers 2, 1, and 0.8, and about 1.3 inches a t  Mach 1.35. 

Survey rakes 
Their axial 

Ignoring unusual dis tor t ions of thy 

Local Mach numbers (denoted by Mz) computed by means of the Fbyleigh 
equation fram the loca l  body s t a t i c  pressure and the P i to t  pressure far- 
thes t  from the body a r e  shown i n  figure 3. These Mach numbers show a 
circumferential var ia t ion that probably was due t o  the wake from the 
support s t r u t .  A t  tunnel Mach numbers 2, 1, and 0.8, the loca l  Mach number 
was lower i n  the region behind the s t r u t ,  and a t  Mach 1.35 it was lower i n  
the plane normal t o  the s t ru t .  The reason f o r  this shift of the low Mach 
number region as tunnel Mach number is  varied is  not apparent. 

Boat ta i l  static-pressure distributions a l so  indicated a varying de- 
gree of circumferential variation. This variation w a s  greater a t  higher 
tunnel Mach numbers (e.g., Mach 1.35 compared with Mach 0.8) and a l so  
generally with higher boa t t a i l  angles. The worst condition investigated 
(ejector  5 o r  6) i s  shown i n  figure 4 a t  several tunnel Mach numbers. 
The boa t t a i l  angle i n  this case was 7.5O. The region of lowest pressure 
was behind the s t r u t  a t  Mach 1.35, but at Mach 1 it was i n  the plane normal 
t o  the s t r u t .  A t  Mach 0.8 the pressures were fairly uniform, 
e jectors  10 t o  1 2  had higher over-all boa t t a i l  angles (in two s teps)  than 
ejector  5, the pressures were more uniform. The pressures of other ejec- 
t o r s  w i t h  lower-angle single-step boat ta i ls  were a l so  more uniform. 

Although 



All ejectors  were investigated a t  several  Mach numbers. With ejectors 
1 t o  1 2  several  values of primary-nozzle pressure r a t i o  were employed a t  
each Mach number, and with each pressure r a t i o  several  values of secondary 
flow were investigated. 
several values of secondary flow was investigated a t  each Mach number 
with e jec tor  13. 

Only one primary-nozzle pressure r a t i o  w i t h  

For e jectors  1 t o  9 f u l l  afterburning was assumed f o r  Mach numbers 
1.35 and greater,  and no afterburning f o r  Mach numbers 1.35 and less .  
The assumption of the Mach number a t  which afterburning was turned on did 
not a f f e c t  the generali ty of the conclusions. For e jectors  10 t o  13 f u l l  
afterburning was assumed t o  occur over the Mach number range of the in-  
vestigation. 
about 80° F. 

Total temperature of both primary and secondary a i r  was 

Data Reduction 

Weight-flow ra t e s  were obtained with standard ASME or i f ices .  
mary t o t a l  pressure was cmputed from the primary weight-flow r a t e  and 
measured s t a t i c  pressures i n  the primary nozzle upstream of the con- 
vergent- portion. Secondary t o t a l  pressure w a s  measured with rakes up- 
stream of the primary-nozzle-exit station. 

Pr i -  

Because the force-measurement apparatus did not perform with con- 
s i s t en t  accuracy during the test, ejector gross thrus t  (exit-plane t o t a l  
momentum) w a s  generally computed from the sum of the t o t a l  mamentum of 
the primary and secondary streams a t  reference s ta t ions within the ejector  
plus the sum of w a l l  forces i n  the axial  direct ion between the reference 
s ta t ions  and the e x i t  plane. In  general, this procedure gave sa t i s fac tory  
resu l t s .  Ekceptions occurred when large quant i t ies  of secondary airflow 
were used (specifically,  the exceptions were ejector  8, Mach 1.35 with no 
afterburning, and e jec tor  9, bkch numbers 1.35 and 1.0 with no afterburn- 
ing) .  
ceeded the maximum theoret ical  value with the given secondary and primary 
weight-flow rates and t o t a l  pressures. 
i n  f igure 5 f o r  e jector  8. 
of adjusted th rus t  r a t i o  (computed frm the gross th rus t  obtained by the 
procedure described) exceeded the maximum possible value a t  very high 
values of secondary-flow ra t io .  This did  not occur a t  Mach 1.0 ( f ig .  
5(b) ) ,  which was the more typical  situation. It i s  believed tha t  t h i s  
e r ror  was a r e s u l t  of circumferential variations of the secondary flow 
that were not detected with the instrmeotat ion employed and that became 

In  these cases the thrus t  computed by th i s  procedure s l i gh t ly  ex- 

This discrepancy i s  i l l u s t r a t e d  
A t  Mach 1.35 (f ig .  5(a)) the measured value 



important only when the secondary-flow ra te  was unusually large. For these 
exceptional cases, the maximum theoret ical  values were used i n  the A.NALYSIS 
section. 

With the modified versions of e jector  1 (i.e., with spoi lers  and with 
air  inject ionj  the waii surfaces were too irrzg-Llar t o  e v s l i ~ t e  the v a ~  
force. 
s t r a i n  gage and bellows arrangement) were used of necessity. 
configurations the apparatus appeared t o  be operating reasonably well. 

Therefore, the data from the force-measurement apparatus (a 
For these 

Thrust Ratio 

In the ANALYSIS section of the report  an effect ive thrus t  r a t i o  
(F - msVg - D)/Fi 
th rus t  r a t i o  F/Fi and the boa t t a i l  plus base drag D. A t  some Mach 
numbers where these data were not obtained, an estimated value f o r  small 
secondary-flow r a t i o  was computed by the following procedure: (1) If  
the expansion r a t i o  was correct for  the particular nozzle pressure r a t i o  
( fu l ly  expanded), a 2-percent l o s s  i n  gross-thrust r a t i o  was assumed t o  
account f o r  f r i c t i o n  losses i n  the nozzle. 
gross-thrust r a t i o  due t o  flow divergence a t  the exit plane were computed 
assuming F/Fi = (1 + cos a)/2. (3) If the primary flow was underex- 
panded, the addi t ional  loss  i n  gross-thrust r a t i o  was computed from a 
calculation of exit-plane momentum. 
expanded, estimates of gross-thrust r a t i o  were made based on e a r l i e r  un- 
published data. 
(6) The configurations f o r  which these estimates were made did not have 
bases; therefore, base drag was not needed. 

i s  evaluated t h a t  required a knowledge of the gross- 

( 2 )  Additional losses i n  

(4) If the primary flow was over- 

(5) B o a t t a i l  drag was computed from reference 2. 

The basic data a re  presented i n  figures 6 t o  22, Parameters pre- 
sented a r e  thrus t  ra t io ,  e jector  pressure rat io ,  b o a t t a i l  drag coeff i -  
cient,  and e i the r  base pressure r a t i o  ( i f  a base existed) or  e x i t  
static-pressure r a t i o  as functions of secondary-flow ra t io .  
static-pressure r a t i o  i s  useful as an indication whether or not the p r i -  
mary flow i s  overexpanded. 

The exit 

ANALYSIS 

The data of figures 6 t o  22 have been used i n  an analysis of the 
performance of the ejectors  over a Mach number range t o  obtain a compar- 
ison of the solutions considered for  the off-design e jec tor  problem. A s  
a basis  f o r  canparison, nozzle pressure-ratio schedules with Mach number 
were assumed as shown i n  figure 23. Two schedules were used: the 
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currently or planned f o r  the near future,  and the schedule f o r  e jector  
13 is f o r  an advanced, hypothetical, low-pressure-ratio turbojet  using 
a transonic compressor with a design Mach number of 4. 

The performnce parameter upon which the analysis i s  based i s  an 
effective thrust  r a t i o  (F - msVO - D)/Fi, defined as the ejector  gross 
t h r u s t  minus the free-stream momentum of secondary air  minus the drag of 
the b o a t t a i l  and base (if there i s  one) divided by gross thrus t  of the 
ideal  fully expanded primary flow. W i t h  this parameter, configurations 
designed f o r  a given engine and nacelle s i ze  but having d i f fe ren t  a f t e r -  
body geometries and secondary flows can be compared direct ly .  

Fixed Geometry and Low Secondary Flow 

If a fixed-geometry e jec tor  i s  designed t o  provide peak performance 
at a par t icu lar  design Mach number, and i f  off-design performance i s  not 
a consideration, then the ejector  of necessity must have the correct 
expansion r a t i o  f o r  that Mach number, and the flow divergence a t  the 
exit plane must be small. Ejectors 1 t o  3 a r e  of this type with a design 
Mach number of 3. Assuming that a 2-percent secondary-flow r a t i o  is 
sufficient f o r  cooling purposes over the Mach number range 0.8 t o  3, the 
performance of these ejectors  i n  t h i s  Mach number range i s  shown i n  f ig-  
ure 24. 
speed range with no afterburning operation. Ejector 2, which had a 
larger secondary diameter than e jec tor  1, showed b e t t e r  j e t  separation 
character is t ics  than ejector  1 only a t  h c h  0.8. 
ejector 3 with a contoured divergent wall was about the same as t h a t  of 
the conical ejectors.  

Performance of a l l  three ejectors  was very poor i n  the transonic 

The performance of 

The off-design performance of these fixed-geometry ejectors  can be 
improved, a t  the expense of on-design performance, i f  the divergence 
angle i s  increased or if  the expansion r a t i o  i s  decreased. A higher 
divergence angle would improve the j e t  separation charac te r i s t ics  and 
thus reduce the degree of j e t  overexpansion (although the pressures i n  
the separated region may s t i l l  be lower than i s  desirable because of the 
base-pressure phenomenon (ref. 3) ),. With a smaller expansibn ra t io ,  the 
f low would not be as badly overexpanded a t  off-design conditions. 

With ejector  4 the  expansion r a t i o  was the  correct  value f o r  Mach 3 
operation, as with e jector  1, but the divergence angle was increased from 
9' t o  25O. The performance of this e jec tor  i s  compared with that of 
ejector 1 i n  f igure  25, again f o r  a flow r a t i o  of 0.02. 
number afterburning performance of e jector  4 was estimated t o  be somewhat 
less  than that of e jec tor  1 because of the higher divergence angle, but 
large improvements i n  performance occurred a t  Mach numbers 0.8 and 1.0. 
However, no improvement was a t ta ined  a t  Mach 1.35 with no afterburning. 
the afterburning had been continued t o  some lower Mach number than Mach 

The high Mach 

If 
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With ejectors  5 and 6 the expansion r a t io  i s  decreased t o  that cor- 
With 2-percent flow r a t i o  responding t o  complete expansion a t  Mach 2.2. 

the performances of ejectors 5 and 6 were ident ica l  and a r e  a l s o  com- 
pared h3th tkt ~f e;ezt=r 1 i n  figlze 25. 
underexpansion losses were appreciable (near Mach 3), e jector  5 o r  6 
provided higher performance than e i the r  ejector 1 or  4. The l o s s  i n  
pe r fomnee  of the compromised ejectors  (4 t o  6) wits about the same a t  
Mach 3, but e jectors  5 and 6 were superior at  a l l  other Mach numbers. 
Therefore, it appears that a decreased expansion r a t i o  i s  a much b e t t e r  
compromise than an increased divergence angle. 

Except f o r  the reginn where 

Fixed Geometry and High Secondary Flow 

The reason a fixed-geometry ejector  performs poorly a t  Mach numbers 
l e s s  than design i s  that the e x i t  area i s  too large f o r  the available 
pressure ra t io .  If the secondary flow were increased suf f ic ien t ly  a t  
t h i s  condition, it would f i l l  i n  the excess e x i t  area and prevent over- 
expansion of the primary flow. In designing a fixed-geometry e jec tor  
that will employ th i s  technique t o  improve the off-design performance, 
it i s  necessary t o  select  a proper value of secondary diameter t o  opti-  
mize over-all  performance. It i s  desirable that there be suf f ic ien t  
secondary flow t o  prevent primary-flow overexpansion and a l so  that the 
secondary flow have as high a t o t a l  pressure as possible s o  that over- 
a l l  performance will be high. If the secondary diameter i s  too large 
f o r  the amount of secondary flow being used, then th ro t t l i ng  losses  of 
the secondary air  would occur, with an accompanying loss i n  e jec tor  per- 
formance. On the other hand, if the secondary diameter i s  too small, 
it may be impossible t o  pass suf f ic ien t  a i r  a t  the available pressure. 

"he ef fec t  of increased secondary f l o w  on off-design ejector  per- 
formance i s  shown i n  figure 26 f o r  ejectors 3 and 6 and f o r  two posi- 
t ions of t h e  variable portions of ejector 9. 
Mach 1.35. 
mum values fo r  the various e x i t  diameter ra t ios .  The effect ive thrus t  
r a t i o s  increased rapidly as flow r a t i o  increased even though f u l l  free- 
stream momentum of the secondary air was charged against the ejector.  
Thus, large gains would be realized if the drag and w e i g h t  of the i n l e t  
system t h a t  provides the additional air can be kept low. 

These data were obtained a t  
The secondary diameter ra t ios  were not necessarily the opti-  

One method of obtaining this additional air i s  the use of auxi l iary 
in l e t s .  Another method that was considered i n  detai l  is  the use of the 
excess air-handling character is t ics  of a fixed-capture-area main i n l e t  
a t  lower than design speeds. Typical of i n l e t s  of this type i s  the one 
i l l u s t r a t e d  i n  the sketch of f igure 27. 
surface i s  varied a t  each Mach number so as t o  maintain an i n l e t  mass- 
flow r a t i o  of 1, and excess air is  disposed of through some s o r t  of by- 
pass system (see re f .  4). 

With th i s  i n l e t  the compression 

For an assumed engine operating w i t h  an i n l e t  

.......... ....................... 
0 . .  e . . . . . . . . . . . . . . . .  ...... . .... . 0 .  0 .  . ........ . 0 .  . 0 .  . 0 .  0 .  

0 .  e .  .......... .om: o : E C I I Y T M * *  



of this type, the schedule of bypass mass-flow r a t i o  i s  shown i n  figure 
27. 
and use it i n  the secondary passage of the ejector  (assuming an a f t e r -  
burning primary temperature of 3500' R and a nonafterburning temperature 
of 1600' R),  then maximum available secondary-flow r a t i o  would be as 
shown i n  figure 27. 
t ional  total-pressure losses i n  ducting the bypass air  back t o  the ejec- 
to r ,  and taking the upper schedule of nozzle pressure r a t i o  of f igure 23, 
the  maximum available e jector  pressure r a t i o  becames that shown a l so  i n  
figure 27. In the analyses that follow, where secondary air  i s  assumed 
t o  be obtained from the i n l e t  bypass, the limits of available weight 
flow and of available pressure shown i n  t h i s  f igure w i l l  apply. 
i c a l  problems of ducting large quant i t ies  of high-pressure a i r  around 
the  engine are not considered. 

If it were possible t o  duct a l l  of this bypass a i r  around the engine 

Estimating i n l e t  pressure recovery, assuming addi- 

Mechan- 

Figure 28 shows the improvement i n  performance of e jector  6 when 
large amounts of secondary air  are supplied by the i n l e t  bypass. In 
t h i s  case the secondary-flow r a t e  (also shown i n  the f igure)  w a s  re- 
s t r ic ted  by the pressure l i m i t .  Although the secondary diameter r a t i o  
selected f o r  t h i s  e jector  was not necessarily the optimum, the -rove- 
ment in  performance was large. 
compromised version of a Mach 3 ejector  (i.e., the expansion r a t i o  i s  
less than idea l  a t  Mach 3). I3ata a t  high secondary-flow ra t e s  were not 
obtained with ejectors  that were not compromised (e.g., e jector  Z), but 
the beneficial e f fec ts  of high secondary flow would be obtained with 
these ejectors  also.  

A s  discussed ear l ie r ,  e jector  6 i s  a 

The e f f ec t  on performance of using spoi lers  with ejector  1 i s  shown 
i n  figure 29. The spoilers were assumed t o  be retracted f o r  high-speed 
afterburning operation and extended f o r  transonic nonafterburning oper- 
ation. A t  Mach numbers 0.8 and 1 the spoilers caused j e t  separation as 
they were intended t o  do, and hence improved performance re la t ive  t o  the 
basic unmodified configuration, but f a i l e d  t o  do so a t  Mach 1.35. Even 
when the j e t  did separate, however, the pressures i n  the separated re- 
gionwere s t i l l  less than po because of the base pressure phenomenon 
described i n  reference 3. Thus, performance remained r e l a t ive ly  low. 
Using i n l e t  bypass air, air inject ion with the spoi lers  eliminated the 
loss i n  performance a t  Mach 1.35 as shown i n  the figure, but the resu l t -  
ing performance was no be t te r  than that of the basic e jector ,  At Mach 
numbers 0.8 and 1 the performance was about the same with air inject ion 
plus spoilers as with the spoi lers  alone. With air inject ion alone 
( w i t h  the air again supplied by the i n l e t  bypass), about t he  same im- 
provement i n  performance was at ta ined a t  Mach numbers 0.8 and 1 as with 
the  spoilers, but there was no improvement over the basic e jector  a t  
Mach 1.35, The secondary-flow rates again were limited by the pressure 
available. 
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Although the leve l  of performance was low, a fur ther  comparison of 
the performance of the basic e jector  1 with the performance with a i r  in- 
jection i s  presented i n  f igure 30. A t  Mach 1.35 (f ig .  30(a)) the per- 
formance of the basic ejector w a s  higher a t  a given flow r a t i o  than that 
with air injection. Therefore, a t  this Mach number it would be be t te r  
not t o  use the air- inject ion slots and t o  pass a i l  am.ils%le aec~z&~qy  

30(b)) s l igh t ly  higher performance was obtained a t  a given flow r a t i o  
when air inject ion through the slots was employed. A t  Wch 0.8 (f ig .  
30(c)), the performance was higher when the s l o t s  were employed, even 

l air through the secondary passage of the basic ejector.  A t  Mach 1 (f ig .  

I w i t h  zero secondary flow, than with the basic ejector. Increasing sec- 
ondary flow through the s l o t s  produced relatively small improvements i n  I 

performance. 
open the primary flow did not overexpand internally as much as w i t h  the 
basic ejector.  

Wall pressure distributions showed that with the s l o t s  

Variable Geometry and Low Secondary Flow 

An idealized variable-geometry ejector would have the following 
features: 
ra t io ,  (2)  variable secondary diameter t o  produce a divergent shroud f o r  
each e x i t  position, (3) variable boa t ta i l  angle t o  avoid base area as 
e x i t  diameter i s  varied, with leaves sufficiently long that boat ta i l  
drag i s  negligible. An ex i t  of this type m s  not tested, because with 
the nozzle always on design and with negligible drag the effect ive thrust 
r a t i o  i s  known t o  be about 0.97. 

(1) variable ex i t  diameter t o  obtain the idea l  expansion 

A simpler version of this ex i t  was investigated and is  designated 
The secondary diameter was kept fixed as e x i t  area varied, e jector  7. 

and in te rna l  and external l ines  were varied w i t h  a single s e t  of leaves 
that were short ,  and therefore boa t t a i l  drag was not negligible. The 
schedule of e x i t  diameter r a t i o  employedis shown i n  figure 31. 
ejector  was designed so that the idea l  expansion r a t i o  was attainable 
f o r  afterburning operation between Mach numbers 1.35 and 3. 
assumed that during the t ransi t ion from afterburning t o  nonafterburning 
operation a t  Mach number 1.35 the ex i t  area was not changed. 
sul ted i n  overexpansion a t  Mach 1.35 (nonafterburning) . 
1 and 0.8, the e x i t  diameter was near the ideal value. 
numbers 1 and 0.8 the exit diameter was less  than the secondary diam- 
e t e r  (since the la t ter  was kept fixed), with the resu l t  that the shroud 
was convergent rather than divergent. 
re la t ive ly  low thrus t  par t icular ly  a t  low secondary-flow ra t io s  and high 
primary pressure r a t i o s .  
a t  least as large as the secondary diameter and permit overexpansion (as 
a t  Mach 1.35, nonafterburning) o r  t o  determine some optimum intermediate 
exit  position. 
that would permit secondary diameter t o  vary as the leaves rotated might 
avoid this problem. 

The 

It was 

This re- 
A t  Wch numbers 

However, a t  Mach 

Such a configuration can have 

Alternatives w o u l d  be t o  keep the e x i t  diameter 

The selection of a different pivot point of the leaves 

................................. . . . . .  
0 .  0 .  : .aowxbmx@= . .a . a .  

a . * a * *  
a 0 0 . 0  

0 .  0 .  0 . .  
a 0.0 ........ ............. 
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The performance of ejector 7 is presentedin figure 32 f o r  2-percent 
flow ra t io .  Also shown f o r  reference is  the estimated performance of the 
ideal variable e jector  described earlier. Although e jec tor  7 would have 
<ne ideal expansion r a t i o  a t  Psach 3, i ts  performance w i i i  be iess than 
that of the idea l  e jector  because of the b o a t t a i l  drag. Its r e l a t ive ly  
low performance a t  Mach numbers 1.35 and 1 (nonafterburning) was due t o  
overexpansion and t o  the convergent shroud, respectively. 

Another e jector  that a l so  was mechanically simpler than the  i d e a l  
variable e jector  was ejector  8. 
b e a t t a i l  were fixed. 
this ejector  i s  shown i n  figure 33. 
a t  Mach 3 i n  order t o  a l lev ia te  the off-design problem somewhat .  The 
diameter r a t i o  was near the idea l  value a t  Mach numbers between 2 and 
1.35. 
of the secondary diameter i n  order t o  avoid the problem of the conver- 
gent shroud. 
a t  a l l  Mach numbers less than that. This resulted in overexpansion f o r  
nonafterburning operation. 

The secondary diameter and a l so  the 
The schedule of e x i t  diameter r a t i o  employed with 

The flow was s l igh t ly  underexpanded 

For th i s  e jector  the e x i t  diameter was never l e s s  than the value 

The shroud became cylindrical  a t  Mach 1.35 and remained so 

The performance of e jector  8 with 2-percent flow r a t i o  (without base 
flow) i s  presented i n  f igure 34. 
e jec tor  i s  presented as a reference. A t  Mach 3 it i s  estimated t h a t  the 
performance of e jector  8 would be less than that of the idea l  e jector  
because the flow i s  s l igh t ly  underexpanded and because of boattail drag. 
A t  transonic speeds the performance i s  lower because of (1) overexpansion, 
( 2 )  b o a t t a i l  drag, and (3) base drag. 

Again the performance of the idea l  

Variable Geometry and High Secondary Flow 

The improvement in performance of e jec tor  8 by employing large 
amounts of base flow t o  eliminate the base drag i s  a l so  shown i n  f igyre  
34. It was assumed that the a i r  was provided by the i n l e t  bypass. The 
drop i n  performance f o r  nonafterburning operation was due pa r t ly  t o  
overexpansion of the primary flow and also t o  the total-pressure losses 
of the secondary flow. 

Ejector 9 a l so  was simpler than the idea l  variable e jector  i n  t h a t  
the exit area and the boa t t a i l  were fixed. The schedule of secondary 
&Lameter r a t i o  that was employed i s  presented i n  figure 35. 
extrapolated data and one-dimensional-flow calculations, these values 
of diameter r a t i o  were selected as those t h a t  would match the available 
bypass flow schedule sa t i s fac tor i ly .  The performance of this e jec tc r  
i s  presented i n  figure 36. A s  described i n  the Data Reduction section, 
the measured values of th rus t  r a t i o  exceeded the theoret ical ly  maximum 
possible value f o r  nonafterburning operation. 

By means of 

The theoret ical  values are 

. . ....................... .......... 
0 .  0 .  .... . . . .  0 .  0 .  ...... . . . . . . . . . . . . . . . .  ........ . 0 .  0 .  0 .  . . . . . . .  . * C ~ N f q q ) & ~ .  :... .......... 
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shown i n  f igure 36 where this problem occurred. The performance a t  Mach 
3 again would be less than that of the ideal e jec tor  because of b o a t t a i l  
drag and because the flow was slightly underexpanded (de/$ = 1.6) . The 
drop i n  performance f o r  nonafterburning operation occurred because the 
secondary t o t a l  pressure was less than free-stream t o t a l  pressure as a 
r e s u l t  of the losses ass-med i n  the m a x i - p r e s s u r e - r a t i o  schedule of 
f igure 27. 

C o m p a r i  s on 

The best  performing ejectors  of those considered thus far are com- 
pared i n  f igure  37. 
high secondary flow was within the range of performance encompassed by 
the more cmplex variable-geometry ejectors. 
i n  the low Mach number range was obtained w i t h  e jector  9. 

The performance of fixed-geometry e jec tor  6 with 

The highest performance 

Ejectors with N l  Afterburning 

q e c t o r s  10 t o  13 were investigated with f u l l  afterburning over the 
en t i r e  speed range. The supersonic performance of e jectors  10 t o  1 2  has 
been obtained i n  an ea r l i e r  investigation, and the speed range i s  ex- 
tended i n t o  the transonic range in  the present report. 
of these ejectors  based on the same pressure-ratio schedule as that of 
the previous ejectors  i s  shown i n  figure 38 f o r  2-percent flow ra t io .  
Ejector 10, which differed from ejector  11 only i n  that it had a smaller 
secondary diameter, had about the same performance as ejector  11. 
cause these ejectors  had high b o a t t a i l  angles representative of some 
fuselage-type instal la t ions,  b o a t t a i l  drag was high, and thus the general 
level  of performance was low. 
(corresponding t o  complete expansion at  Mach 3) than e jec tors  10 and ll. 
For a given engine and fuselage size, an increase i n  expansion r a t i o  
would r e su l t  i n  an increase i n  exit area and hence a reduction i n  boat- 
ta i l  area. 
r a t i o  a t  off-design conditions would a t  leas t  be partly compensated f o r  
by the  decreased boa t ta i l  drag. 
construction, e jector  1 2  had a smaller primary-nozzle area than ejectors  
10 and 11; whereas exit area, fuselage area, and boa t t a i l  geometry were 
ident ical .  Hence the data of figure 38 do not show the net e f f e c t  of a 
simple change i n  expansion ra t io ,  but rather show the e f f ec t  of Mach 
number on the performance of various ejector geometries. As with ejec- 
t o r s  10 and 11, the leve l  of performance of e jec tor  1 2  was low because 
of high b o a t t a i l  drag, but additional losses occurred with e jec tor  12 
because of the greater degree of overexpansion of the primary flow. 

"he performance 

Be- 

Ejector 1 2  had a higher expansion r a t i o  

The increased overexpansion losses w i t h  the  higher expansion 

However, because of details of model 



The effect of secondary flow on the performance of ejectors 10 to 
12 at Mach 1 is shown in figure 39. 
formance occurred as flow ratio increased. 

Again, appreciable increases in per- 

The effect of secondary flow on the performance of ejector 13 is I 

shown in figure 40. 
that for the previous nozzles (see fig. 23). 
crease in perfomce as a result of increasing the flow ratio differed 
with Mach number but was appreciable at all Mach numbers. The greatest 
improvement occurred at Mach 1.5. 

The nozzle-pressure-ratio schedule was lower than 
The magnitude of the in- 

SUMMARY OF RESULTS 

The off-design performance of fixed- and variable-geometry divergent 
ejectors has been investigated. 
operation at Mach 3 and were investigated in the Mach number range 0.8 
to 2. The following results were obtained: I 

The ejectors were designed for turbojet 

1. Large performance losses occurred at off-design Mach numbers 
with simple fixed-geometry ejectors designed for peak performance at 
Mach 3. 

2. Compromising design performance by increasing the divergence 
angle or by decreasing the expansion ratio produced large gains in off- 
design performance. 
than an increased divergence angle. 

A decreased expansion ratio was a better compromise 

3. Increasing the secondary airflow to fill in the excess exit area 
of fixed-geometry ejectors at off-design conditions produced large gains 
in performance and made them competitive with fairly complex variable- 
geometry types. 

4. Variable-expansion-ratio ejectors with compromises to reduce I 

mechanical complexity produced performance reasonably close to that of 
an ideal variable ejector. 

I 

5. An ejector with a fixed exit area and a variable secondary diam- 
eter with high secondary airflow produced the best performance of the 
types investigated. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, July 15, 1958 
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Ejector 2 T de 

7 

(a) Ejectors 1 and 2: dp,nb/dp,ab = 0.75; dm/dp,ab = 2.0. 

L 

de/dp,ab = 1.8 
ds/dp,ab = 1.05 

.- 1.21 
'/dp,ab = 2.37 

7 vdp,ab 0.875 
B = 3.50 
a = 23' 

5 = 20 
ejector 
ejector 

L 

de/dp,ab = 1.75 
dg ds/dp,ab = 1.05 

7 l/dp,ab = 2.37 
7 

L 0 = 20 
dg/dp,ab = 1.78 

(b) Ejector 3: dp,nb/dp,ab = 0.75; d,,/dp,ab = 2.0 .  

de/dp,ab = 1.45 
ds/dp,ab = 1.05 (ejector 5) 

= 1.21 (ejector 6) 
L/dp,ab = 1.26 
B = 7.50 
a = go  (ejector 5,) 

- 6.5' (ejector 6) 

(d) Ejectors 5 and 6: dp,nb/dp,ab = 0 . 7 5 ;  dm/dp,ab = 2.0. 

Figure 1. - Ejector geometries. 

ejector 
ejector 
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(e) Ejector 1 with spoilers and air injection. 

C . 0 6 2 5  dp,ab (all Slo t s )  

de/dp,ab = 1.8 (at M = 3 )  

ds/dp,ab = 1 .05  . l/dp,ab = 1.5  
5 ,  = 7' 

. -- 

6, = -11.5' (at M = 3) 1-1 / ' I  a = 14' (at M = 3) 

(f) Ejector 7 :  dp,nb/dp,ab = 0.75; d,,,/dp,ab = 2.0. 

de/dp,ab = 1 . 6  (at 
ds/dp ,ab = 1.05 

B = 6.5' 

M = 3 )  

l/dp,ab = 1 . 6 9  

a = 9.5' (at M = 3) 
- 
dJdp,ab = 2.0.  

de/dp,ab = 

ds/dp ,ab = 1 .OS 
l/dp,;b = 1 . 6 9  

p = 5  
a = 9.5O (at M 

I- I 
(h) Ejector 9 :  dp,nb/dp,ab= 0.75; dm/dp,ab = 2.0.  

Figure 1. - Continued. Ejector geometries. 

(at M = 3) 

= 3 )  

....................... .... .......... ........ . . . . . . . . . . . . . . . . .  0 .  0 .  0 .  0 .  

. . .  . . . 
0 .  0 .  

0 .  0 .  ...... 
0 .  . 0 .  . . ......................... 



= 1.21 (ejector 

a = 12.5' (ejector 10) 
8.50 (ejector 11) 

dB/dp,ab = 1'5 

(I) Ejectors 10 and 11: dp,nb/$,ab = 1.0; d,Jdp,ab = 2.5. 

I- 1.- 
(k) Ejector 13: dp,nb/dp,ab = 1.0; d,,,/dp,ab = 1.45. 

Figure 1. - Concluded. Ejector geometries. 
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A (a) Mach number, 2.0. 

0 .1 .2 .3 .4 .5 .6 . l  .9 1.0 
Ratio of Pitot to free-stream total pressure, P1/Po 

(b) Mach numher, 1.35 

Figure 3. - Pitot pressure profiles upstream of boattail. 
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(a) Mach number, 1.35. 

F&ure 4. - Boattail static-pressure distribution with 7.5O boattal l  angle. 
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(b) MBch number, 1.0. 

p&ure 4. - Continued. Boattail s t a t i c - p e e u r e  diatr lbut lon with 7.S0 boattall angle. 
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Station from beginning of b o a t t a i l  W e ,  in. 

(c) Mach n-r, 0.8. 

Figure 4. - Concluded. Boattail  statio-preasure distribution w i t h  7.5O boat ta i l  angle. 
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Figure 5. - Comparison of measured and m a x i m u m  thrust ratios for ejector 8 
with no afterburninR. 
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Figure 30. - A i r  in jec t ion  compared with high secondary flow with e j ec to r  
1 and no afterburning. 
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Figure 31. - Expansion-ratio schedule of e j ec to r  7. 
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Figure 32. - Effect  of design compromises of variable-geometry e j e c t o r  7. Secondary-flow r a t i o ,  0.02. 
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